
3 .  

. 

. 

6 .  

7 .  

8. 

9. 

i0. 

V. A. Babenko, in: Thermal Tubes and Heat Exchangers with Capillary-Porous Elements 
[in Russian], Minsk (1986), pp. 21-38. 
B. S. Petukhov, V. D. Vilenskii, and N. V. Medvetskaya, Teplofiz. Vys. Temp., 15, 
No. 3, 554-565 (1977). 
V. N. Popov and V. M. Belyaev, Teplofiz. Vys. Temp., 13, No. 2, 370-378 (1975). 
N. M. Galin and V. M. Esin, Teplofiz. Vys. Temp., 14, No. 5, 991-997 (1976). 
V. N. Popov, Teplofiz. Vys. Temp., 15, No. 4, 795-801 (1977). 
V. A. Babenko, in: Heat and Mass Transfer: From Theory to Practice [in Russian], 
Minsk (1984), pp. 60-65. 
B. S. Petukhov and L. I. Rozen, Teplofiz. Vys. Temp., 12, No. 3, 565-569 (1974). 
N. M. Galin and V. M. Esin, Teplofiz. Vys. Temp., 15, No. 6, 1248-1255 (1977). 

RADIANT HEAT TRANSFER IN A FURNACE WITH TWO VOLUME 

ZONES 

S. P. Detkov UDC 536.3 

A modification of the model of radiant heat transfer in a furnace for arbi- 
trary transmission of the furnace core is proposed. 

i. Introduction 

In the mathematical model of [i], a furnace is represented by a cylindrical channel 
with division along the axis into zones with isothermal volumes in each section. Of course, 
the model gives significantly overestimated values of the heat transfer or underestimated 
values of the temperature of the exhaust gases, other conditions being equal. In [2], the 
model was significantly improved. The volumes in the radial direction are divided into two 
coaxial layers: the core and a conservative part; the conservative layer (CL) is noniso- 
thermal. Essentially, the core is also nonisothermal, but is characterized by the mean 
(over the cross section) pyrometric temperature. Some deficiencies of the model may be 
noted: a) the core is assumed to be optically dense and is replaced by a nontransparent 
surface with equivalent radiational properties; the model corresponds to a large furnace; 
b) the spectrum in extreme representations (grey and antigrey)only changes in the CL. 

The present model is modified on a new basis. The furnace core may have any transmis- 
sion characteristics; therefore the model in fact has two volume zones in each cross sec- 
tion of the channel. 

The principal underlying this new zonal-calculation approach was outlined in [3, 4]. 
The volume of the medium is replaced by a surface with equivalent radiative properties. 
This surface transmits some of the incident flux. Since the volume has a real temperature 
field, the surface has different local values of the intrinsic-radiation density qc and 
other quantities. Therefore, it is divided into zones with mean internal characteristics. 
In the present work, in contrast to [3-5], the volume is divided into two zones, and the 

Fig. i. System of four surfaces: 
three (Fz, F2, F,) represent two 
volume zones: the core and the 
conservative layer. 
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Fig. 2. Fans of arrows denoting the volumes for which 
the transmission capacities DI, D00, D2, D,, Do,, Do 
are determined. 

method takes on additional possibilities. In the axisymmetric model with three zones (two 
volume zones and the shell), four surface zones and correspondingly a system of four zonal 
equations are obtained. 

2. System of Bodies 

The shell F 0 with absorptive capacity A0, the external surface F I = F 0 of the annular 
layer with transmissive, absorptive, and reflective capacities DI, al, rl, the internal sur- 
face F 2 with components D2, a,2, r2, and the external surface of the core F, = F 2 with con- 
stants D,, a,, r, are shown in Fig. I. The quantities r i appear in acts of energy scatter- 
ing. The ratio F,F 0 = ~ is the angular coefficient at surface F, in the absence of a medium. 
In Fig. 2, fans of arrows denote the volumes for which the integral transmissive capacities 
DI, D00, D2, D,, D,0, D o and other optical characteristics are determined. It is simple to 
prove that 

D,o = D2D,; Do = D 1 - -  ~ D 2 ( 1  - -  D ,o ) ;  ( 1 )  

(1 - -  ~) Doe = Do - -  ~D2D, = D1 - -  ~D~. 

The following relations are employed: aL+r~+Dl-= i; a2+r~+D2-~- I; a.+r.+D,:~- I; Ao+Re-~- I. 
The emissivities and absorptive capacities are assumed to be equal: el=al; e2=a2; e,=a.; e0=-A0. 

3. Zonal Equations 

The densities of effective and intrinsic fluxes for the surface F i are related by the 
matrix equation 

( I  - -  Ro,;) qe  = qo' 

where R is the diagonal matrix of reflective capacities. In writing the matrices in the 
order F0, FI, F2, F,, the matrix I - R~ takes the form 

1 - - R o D e  - -  R o  - -  R o q ~ D , o  - -  o~D2~ 
, - -  r~ t 0 RO 

i --- r2D,o 0 I - - r ~ D ,  - -r~  ! 
- -  r ,D~ 0 -- r ,  1 ! 

(2) 

Multiplication of the matrices in Eq. (2) gives the system of zonal equations 

(1 - -  RoDe) q e o =  q~o + Roq~lq- Ro~D,oqe2q- Roq~D2qa,, 

qet = qcl -~- rlqeo, 

(1 - -  r~D,) q e 2 =  qc2 + r2D,oqe o+ r2qe,, 

(3) 
(4) 
(5) 
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q:e, = qc, + r,D2qo+r,qe2. (6 )  

In the case of a black shell and with no energy scattering R 0 = r i = 0, the equations 
degenerate to trivial equalities qei = qci" Hence it follows that they are inadequate for 
the solution of heat-transfer problems. 

In calculating qei, the error may be large because of the indeterminancy in r i. First, 
the reflective capacities of the zones are small; the value r = 0.05 in the illustrative 
calculation below is close to the maximum for commercial furnaces, even large ones. Second, 
they are usually estimated with low accuracy. For such cases, the system must be trans- 
formed. 

According to the classification of radiant fluxes for the shells (surface F 0) 

Aoq~o= Roqro + qco. (7) 

For the surface bounding the volume zone, for example, for F, with transmissive capacity D, 

a,q~ = r ,q~ + ( 1 -  O,)qc ,. (8 )  

E q u a t i n g  t h e  r i g h t - h a n d  s i d e s  o f  Eqs .  (6 )  and (8 )  w i t h  d i v i s i o n  o f  Eq. (8 )  by a ,  g i v e s  

q c , - -  q, : a ,  (% 2~ D2q~), q,  : - - q r , "  (9 )  

For surface F 2 

substitution of qe2 

By the same method, 

ayqey= ryqry+ (l--Dy)qc~; 

into Eq. (5) gives 

(1 - -  r~D,) qr2 + [1 - -  D,  (I - -  D~)I qc2 = a2 (qe, -t- D,oq~o). (10)  

the following equation is obtained for surface F1 instead of Eq. (4) 

qrl + qcl : alqeo. (ii) 

Now r I does not play a large role if it is multiplied by quantities which are known or 
obtained from additional equations. Analogous transformations are performed with Eq. (3) 
as R0 e 0. After substitution of qe0 from Eq. (7), it is found that 

(1 - -  BoDe) qr0 Jr (1 - -  Do) qc0 = Ao (q~ -t- ~D,oq~-{- ~D~q~). ( 1 2 )  

The s y s t e m s  in  Eqs .  ( 3 ) - ( 6 )  and Eqs .  ( 9 ) - ( 1 2 )  a d m i t  o f  o t h e r  e q u i v a l e n t  t r a n s f o r m a t i o n s  
on t h e  b a s i s  o f  t h e  c l a s s i f i c a t i o n  o f  t h e  r a d i a n t  f l u x e s  as  a f u n c t i o n  o f  t h e  f o r m u l a t i o n  
o f  t h e  p r o b l e m .  

R a d i a t i o n  s o u r c e s  may a c t  in  b o t h  z o n e s .  However ,  t h e  c o n d i t i o n  t h a t  t h e  e x t e r n a l  l a y -  
e r  i s  c o n s e r v a t i v e  i s  i n t r o d u c e d  b e l o w ,  as  i n  [ 2 ] .  T h i s  g i v e s  t h e  a d d i t i o n a l  e q u a t i o n s  

q, = q~/% qry=--q~/% where q, =--qz~. 

Other phenomenological equations are also useful. For example, the equations 

(13) 

q~ = q e l + q - ~ D 2 - - q e o [ 1 - - ( 1 - - @  Doe], q, = q~2--q~--D2q~eo 

lead to the following relation after elimination of ql2 and the substitution of D00 from 
Eq. (i) and qr0 from Eq. (13) 

(I - -  D=) q, q- [1 - -  D 1 -~ ~D~ (I - -  D2)] qeo= q~ q- ~D~qe~. (14)  

With specified conditions at the surface F0 (e0, A0, qr0) and ~, the left-hand side of 
Eq. (14) is constant with any choice of qel and qey" It is evident that the underestima- 
tion in the calculation of qe~ below leads to overestimation of qe2 and, according to Eq. 
(9), overestimation of qc, and the core temperature e,. Usually, the reflective capacity 
of the CL is small: r I = r 2 = 0; qe2 = qc2 and qe2 = qc1" If qel = ~qe2 is assumed as a 
rough approximation, it follows from Eq. (14) that 
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r = {~ (1 - -  D~) q .  4- [1 - -  D~ q- ~D2 (1 - -  D2)J qeo}/(1 q- D~). (15) 

In this case, the balance equations are adequate for the solution of the problem. How- 
ever, the estimate in Eq. (15) must be refined. The system of balance equations is satis- 
fied by a set of qem and only one of them does not conflict with the internal heat transfer 
of the volume. Simple estimates of qcl are given below. Note that qe~ may be found direct- 
ly from Eq. (4). 

4. Estimate of the Flux qc~ 

The estimate of the intrinsic radiation of the annular zone at the shell is given first 
of all in the plane-layer approximation. It was shown in [6] that the semiinfinite conser- 
vative medium may be replaced by a boundary layer with optical thickness T 0 ~ 0.5 and an 
equivalent surface established at this depth. If there is no energy scattering, then 

T0 

O~Dd% 
0 

where d = exp(-l.8~) on the basis of the effective depth. According to [6], with a cold 
black wall 

Substitution of 8~ 
gives the result 

O~ = 0 .75q~  {~ + f (T)I, f (~) = 0,7104 -- 0.1331e - 3 ,  7r 

4 and replacement of T 0 according to the relation 1.8~ 0 = l n ( 1 / D 2 )  

~0  = 0 , 8 3 q ~  {0.71 (1 - -  D~) q- 0.53 [1 - -  (1 q- In ( 1/D2 ) ) D~] - -  0.04 (1 - -  D3)}. 

The coefficients are slightly corrected, so that 

qgl--+qro as D 2 - + 0 .  

In a heated grey shell with thermodynamic equilibrium, the temperature is established 
from the relation @i04 = qe0" Therefore, 8104 becomes the term with O 4 in the integrand. 

0 Repeated integraton of qc~ corresponds to the addition of the term qe0(l - D2), in which 
the coefficient 2/1.8 is omitted. It remains to take account of the energy scattering. 

In this case, with thermodynamic equilibrium, the term qe~(l - D 2) determines qe~" 
It is found that qcl = qe0 (I - D2 - rl)" In the general example, as in the given particu- 
lar case, the substitution D 2 ~ D 2 + r~ is made. Finally 

= q~ (1 - -  D2 - -  F 1 )  @ 0.83q~  !0.71 (1 - -  D2 - -  r~) @ %1 

I f  t h e  e n e r g y  i s  s c a t t e r e d  w i t h o u t  a b s o r p t i o n ,  t h e n  D 2 + r ~  = 1 a n d  q c ~  = 0 .  

(16) 

5. Influence of the Curvature of the Layer on qc~ 

Consider the simplest example of an optically dense core with its surface at the same 
temperature 8.. The surface F0 is black and cold, and there is no energy scattering in the 
medium (RQ = r i = 0). According to [7] 

qr~ = [~/(~ + L0)J 0~, (17) 

where the thermal resistance of the CL is described by the formula 

~,o --- 0 .75% In (1/~) / [ (1/~)  - -  11, To = k (Po - -  P) 

and k is the attenuation coefficient of the grey medium. 

With specified qr0 and To, increase in curvature of the layer (decrease in ~) is accom- 
panied by increase in 8, and hence qc," According to Eq. (9), qc2 also increases. In the 
given particular case, qei = qci, qe0 = 0. According to Eq. (14) 
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a2@o = qcl + (pD.,q(,~. ( 1 8 )  

Using E q .  ( 9 )  

~nqc , - -  q ~  = ~a,qc~ 

and eliminating qqc2 it follows that 

(a2a, + O2) qro = a,qcl + a ,O~@~ . 

A s s u m i n g  a ,  = 1 a n d  e l i m i n a t i n g  ~ 0 ,  4 f r o m  E q .  ( 1 7 ) ,  i n  w h i c h  a ,  = 1 a l s o ,  
that 

it is found 

q~  = [1 - -  D~(1 + ~,o)l q ~ .  ( 1 9 )  

F o r  a p l a n e  l a y e r ,  D 2 = e x p ( - 1 . 8 ~ o ) ;  h e n c e  ~o = 0 . 2 8 3 8  w h e n  D 2 = 0 . 6 .  T a k i n g  i n t o  a c -  
c o u n t  that ~ = i, qcl = 0"2723qr0" Curvature of the layer with ~ = 0.6 with the same opti- 
cal thickness increases qcl on account of the reduction in ~*0, qcl = 0"3021qr0; i.e., the 
increase is 11%. In fact, D 2 increases; therefore, the increase in qcl is less. According 
to the estimate in Eq. (16), qcz ~ = 0.2508q~ when r I = qe0 = 0. One more estimate is asso- 

~0 
ciated with the assumption qcl i ~qc2" This assumption results from passing in the limit to 
a plane layer, when ~ = i. At large D2, the right- and left-hand sides are little different, 
and the sign of the inequality may change with decrease in ~. As a result of formulating 
Eq. (18), it follows that 

q~x = [(1 -- Du)/(1 + D~)] qro = 0-25qr0. 

6 .  P r o b l e m  

C o n s i d e r  a n  e x a m p l e  o f  t h e  f o r m u l a t i o n  a n d  s o l u t i o n  o f  t h e  p r o b l e m  o f  r a d i a n t  h e a t  
transfer. The optical characteristics of the volume zones depend on their dimensions. If 
the dimensions are to be determined, as in the model of [2], the values of the constants 
are specified in the first-cycle approximation, and refined in the subsequent cycles of the 
calculation. On the basis of practical experience of furnace operation, the density of the 
resulting flux at the heat-receiving surface qr0 must be specified. From estimates of the 
contamination, the temperature 8o and absorptive capacity A0 are determined. Having calcu- 
lated qc0 = A0004, qe0 is found from Eq. (7). It follows from Eq. (13) that q, = qr0/~, 
qr, = -q*" After estimating qcl from Eq. (16), it is adjusted upward as in the example in 
Sec. 5. Using Eq. (4), qel is found, while qe2 is determined from Eq. (14). Equation (9) 
gives qc, and then 8,. The temperature field in the core may be inhomogeneous; the mean 
value of 8, may be called the effective core temperature; it is important that it is ob- 
tained in the course of solving the problem. The remainder of the equations are used as 
controls. It is simple to establish that q, i qc, !a,. 

7. Numerical Calculation 

In the calculations, the conditions are simplified; reflection and scattering of the 
fluxes are omitted: R0 = rl = r2 = r, = 0. The general Eq. (2) and the particular Eqs. 

(3)-(6) degenerate to the trivial equality qei = qci" The information is contained in the 
system in Eqs. (9)-(12). The following values are specified: 8 o = 0.2; qr0 = 0.12; :~= 
F,/F 0 = 0.6; a I = a 2 = a, = 0.4; DI = D2 = D, = 0.6. It follows from Eq. (i) that D,0 
0.36; D O = 0.37. Then q, = 0.12/0.6 = 0.2; qc0 = 804 = 0.0016. According to Eq. (16), 
qcl is 0.03074. The influence of the curvature is disregarded. The results obtained are 
as follows 

qco  = 0,0016; %1 : 0.03074; qc2 = 0.05036;,  % ,  = 0.2205; qro = 0.12; 

qm = - -  0,03010; q n  = 0.05017; q r ,  = - -  0,2; 04 = 0,5513; O, = 0.8617. 

The mean CL temperature is estimated from qc = (qcl + qc2 )/2 = 0.40551 04 = qc/al = 0.10141 
= 0.5643. In accordance with [2], the temperature field in the furnace is determined by 

the thermal-radiation mechanism, regardless of convection. The values of O, and ~ give the 
exhaust-gas temperature. 
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8. Convective Part of the Model 

In the convective part, the model in [2] is retained. The density of the convective 
flux at the surface F0, qc, is added to the density of the radiant flux qR0 = qr0: q = 
qR0 + qc" In calculating 8y from 0, and ~, the velocity field of the medium in the output 
cross section of the furnace is taken into account. The fuel flow rate is calculated from 
the balance equation [2] 

q = Bo (1 -- Oy) -- Bo,d(O u -- Od), 

where 

Bo = BvT/(FoaT~); Bo a = ~-7/(FoaT]); 
B is the fuel flow rate, kg/sec; V d is the flow rate of the medium being drawn off at tem- 
perature e d. 

9. Taking Account of the Spectrum 

In the equations obtained for the grey bodies, the optical constants are chosen in ac- 
cordance with the real spectrum. This is the usual but inadequate method of modern calcu- 
lations. In [2], as an alternative, the antigrey spectrum for the CL was taken, with little 
influence on the results. One trend in the development of the present model is to assume 
the antigrey spectrum for both volume zones. The temperature field and heat fluxes may 
vary significantly. The heat-transfer surface is assumed to be grey. 

i0. Conclusion 

The model proposed here for heat transfer in a furnace is distinguished by the fact 
that the near-wall conservative layer (CL) of the medium with a natural temperature field 
is taken into account. The burner is in the central volume zone and, according to the 
given modification of the method, may have any transmission. The radiant fluxes are de- 
scribed by a system of zonal equations of new type. They cannot be related to the CL tem- 
perature, since this volume zone is nonisothermal. Therefore, the balance equations are 
inadequate, and are completed by other equations, including the equation of internal heat 
transfer in the CL. The materials of the present work and [2], together with experimental 
data, may form the basis for practical furnace calculations. 

NOTATION 

a, A, r, R, D, absorptive, reflective, and transmissive capacities of volumes and 
surfaces; F, surface, m2; ~, specific heat of the medium, J/m~.K; T, temperature, K; q*, 
heat-flux density, W/m2; 9, radius, m; v, specific flow rate of combustion products, j~3/ 
kg; B, fuel consumption, kg/sec. Indices: 0, I, 2, *, body surfaces, reading toward the 
channel axis; a, R, C, adiabatic, radiant, convective; c, e, I, r, intrinsic, effective, 
incident, and resultant; q ~ q*/aTa4; 8 = T/Ta; �9 = F,/Fo; F 0 = FI; F 2 = F,. 

1. 
2. 

3. 

4. 
5. 

6. 
7. 

LITERATURE CITED 

S. P. Detkov, Prom. Tekh. Teplotekh., 9, No. 3, 97-104 (1987). 
S. P. Detkov and O. A. Bryukhovskikh, "Two-zone model of heat transfer in furnace," 
Inzh.-Fiz. Zh., 58, No. i, 108-114 (1990). 
S. P. Detkov and A. E. Erinov, Thermal Processes in Furnace Units of the Aluminurl 
Industry [in Russian], Kiev (1987). 
S. P. Detkov, Prom. Teplotekh., 8, No. 3, 101-105 (1986). 
S. P. Detkov, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, Issue 4, No. 15, ]2-16 
(1987). 
S. P. Detkov, Teplof iz .  Vys. Temp., ~, No. 3, 438-443 (1965). 
S. P. Detkov, Inzh . -F iz .  Zh., 54, No. 6, 1018-1022 (1988). 

941 


